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Microscopic dynamics of molecular liquids and glasses: Role of orientations
and translation-rotation coupling

T. Theenhaus, R. Schilling, A. Latz,* and M. Letz†

Institut für Physik, Johannes Gutenberg-Universita¨t, Staudinger Weg 7, D-55099 Mainz, Germany
~Received 21 May 2001; published 22 October 2001!

We investigate the dynamics of a fluid of dipolar hard spheres in its liquid and glassy phases, with emphasis
on the microscopic time or frequency regime. This system shows rather different glass transition scenarios
related to its rich equilibrium behavior, which ranges from a simple hard sphere fluid to long range ferroelectric
orientational order. In the liquid phase close to the ideal glass transition line and in the glassy regime a medium
range orientational order occurs leading to a softening of an orientational mode. To investigate the role of this
mode we use the molecular mode-coupling equations to calculate the spectraf lm9 (q,v) andx lm9 (q,v). In the
center of mass spectraf009 (q,v) andx009 (q,v) we found, besides a high frequency peak atvh f , a peak atvop ,
about one decade belowvh f . vop has almost noq dependence and exhibits an ‘‘isotope’’ effectvop}I 21/2,
with I the moment of inertia. We give evidence that the existence of this peak is related to the occurrence of
medium range orientational order. It is shown that some of these features also exist for schematic mode
coupling models.

DOI: 10.1103/PhysRevE.64.051505 PACS number~s!: 64.70.Pf, 61.25.Em, 61.20.Lc
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I. INTRODUCTION

The dynamical properties of liquids and glasses are st
challenging problem. In the vicinity of the glass transitio
the frequency~or time! range can be decomposed into
least three different domains, thea, b, and microscopic re-
gimes. The first one describes the structural relaxat
which dramatically slows down when the glass transition
approached from above. In the idealized mode-coup
theory ~MCT! for simple liquids @1–4# and for molecular
systems@5–7# it even stops at a critical temperatureTc .
Probably the most interesting result of MCT is the existen
of the so-calledb relaxation, which describes the dynami
within a cage of particles above and belowTc . The corre-
spondingb frequency scale is much larger than that fora
relaxation. At still higher frequencies there are vibration
and librational motions, which constitute the microscopic
gime.

One may say that most of the attention in the field
glassy dynamics during the last 15 years has been devot
a andb relaxation. This activity has been mainly stimulat
by MCT which in these two regimes predicted scaling la
with diverginga andb time scales. These predictions ha
been tested intensively by experiments and numerical si
lations. A satisfactory agreement has been found for m
glass forming systems@7–15#. Experimental and simulation
results do not exhibit any singular or crossover behavior
microscopic frequenciesv, i.e., for v>1 THz. Neverthe-
less, in that regime an interesting phenomenon occur
most glasses but not in crystals and colloidal glasses,
so-called boson peak. Indications for this peak came fr
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two different sides. First, the low temperature specific h
c(T)/cD(T) scaled by the phonon contributioncD(T)}T3

shows a peak at about 10 K for several glass formers~see,
e.g., @16#!. This excess with respect tocD(T) around 10 K
implies the existence of additional excitations besides
long wavelength acoustic phonons. Second, Raman spe
I (v) compared to the phonon contributionI D(v)}v2 ex-
hibit at about 1 THz an excess also~see, e.g.,@17#!. Since the
temperature dependence of the excess intensity scales
the Bose distribution functionnB(T), the peak is called the
boson peak.

That these two observations might have a common or
was first shown by Buchenauet al. @18,19#. For vitreous
silica these authors also found an excess with respec
gD(v)}v2 for the vibrational density of statesg(v) deter-
mined from inelastic neutron scattering~INS! data. Using
g(v) to calculatec(T)/cD(T) led to good agreement with
the result from heat capacity measurements. In particular,
peak positions for both results coincided. Although the bos
peak does not seem to posses any singularv or T depen-
dence it is a universal phenomenon for all systems with
exception of glass forming colloids, in the sense that it a
pears more or less for almost all glass formers. For, e.g., L
solutions@11# and orthoterphenyl@20#, it has been stresse
that the boson peak, together with the narrowing of a cen
peak atv50, develops continuously from the liquid to th
glassy phase.

Despite considerable experimental and numerical ef
its microscopic origin is still not satisfactorily understoo
Two reasons might be responsible for that. First, e.g., in
case of light scattering, the precise connection between
measured quantity and the basic theoretical objects, the t
or frequency-dependent site-site or molecular correlat
functions for molecular liquids, is not known. For instance
has been shown that several coupling mechanisms betw
light and distinct modes of liquid ZnCl2 exist which have
different v-dependent coupling constants@21#. This may
at-
©2001 The American Physical Society05-1
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complicate the determination ofg(v) from Raman spectra
Second, the relationship between the varioust- or
v-dependent correlators and microscopic modes obta
from a diagonalization of the dynamical matrix is not obv
ous. In addition, these correlators can be calculated ana
cally only under serious approximations. It is apparent t
numerical investigations represent a powerful tool since th
microscopic nature allows calculation of both the correlat
or spectra and under certain conditions the microsco
modes. The possible character of these modes ranges a
lows.

vibrational ↔ relaxational
extended ↔ localized
propagating ↔ non-propagating
harmonic ↔ anharmonic
longitudinal ↔ transversal
coherent ↔ random
translational ↔ rotational
acoustic ↔ optic

Since these feature can occur in combinations, the c
plexity of the problem becomes obvious. In addition, diffe
ent experimental approaches to a specific material or a
cific measurement of different types of glass former, e
strong or fragile ones, may exhibit different features of t
same phenomenon.

Without demanding completeness let us briefly review
present status. Inelastic x-ray scattering~IXS! on v-SiO2
gave evidence that propagating acoustic sound waves
even abovevBP , the position of the boson peak@22#. This
led these authors to conclude that the propagating mode
also involved in the boson-peak itself. On the other hand
crossover atvBP from propagating to localized~strongly
scattered! acoustic modes was deduced forv-SiO2 from INS
and IXS @23#. Comments on this controversy are given
Refs.@24–26#. However, interpretations of IXS experimen
that are free of any model have recently strengthened at
the fact that there are propagating modes abovevBP @27,28#.
Molecular dynamics~MD! simulations for v-SiO2 have
given evidence that the boson-peak modes cannot
strongly localized and that there is a contribution of tra
verse propagating modes in the boson-peak regime@29,30#.
IXS experiments for LiCl solutions and glycerol seem
detect propagatinglongitudinal modes atvBP @31#, whereas
a MD simulation for H2O shows a mixing of propagatin
longitudinal and transverse modes, at least for large eno
q (q.4 nm21) @32#.

Further important information about the nature of t
boson-peak modes comes from a normal mode analysis
system of soft spheres@33# and for SiO2 deep in its glass
phase@34–37#. There was found that these modes are h
monic and quasi localized@33,36#. They occur due to hybrid-
ization of localized low frequency optic modes with prop
gating acoustic states@34# and are extended bu
nonpropagating. In addition each normal mode has a co
ent and a random component. The latter finding is consis
with other numerical results for a Lennard-Jones liquid@38#
and liquid ZnCl2 @21,39,40#, and conclusions drawn from
experimental data for various glass formers@41,42#. Since
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ZnCl2 was considered in its liquid phase, only an instan
neous normal mode analysis is feasible. Restriction to
stable modes accurately reproduces in the microscopic
quency regime the dynamical structure factorS(q,v) ob-
tained from a MD simulation@40#. This implies a harmonic
mode character at temperatures even above the MCT g
transition temperatureTc .

There is not much analytical work on the boson peak. F
a harmonic crystal with random spring constants it has b
shown@43,44# that an excess density of states follows. It h
recently been stressed@45# that the approach in@44# has
some shortcomings which may be removed by use of
lattice models@46#. Another theoretical framework is the so
potential model@47–50# which allows a description of the
low temperature anomalies below 1 K and those at 10–20 K
that includes the excess density of states.

As already mentioned above, MCT has been rather s
cessful in describing thea andb dynamics. Schematic MCT
models @1# where the wave number dependence was
glected were also used to describe experimental spectr
the microscopic regime, including the boson peak@11,51–
56#. Whereas the results in Fig. 6 of Ref.@11# and Fig. 4 of
Ref. @53# yield spectra that are reminiscent of boson-pe
spectra the line shape does not come out satisfactorily. H
ever, recently a detailed MCT investigation for a glass
hard spheres was performed, including theq dependence
@57#. Besides a high frequency peak atvh f an additional
peak atvAOP , about one decade belowvh f , was seen for a
volume fractionw50.6. This peak, which strongly resemble
that in Refs.@11# ~Fig. 6! and @52# ~Fig. 7!, originates from
the distribution of harmonic oscillators within the cages a
has been called theanomalous oscillation peak~AOP!. As
explicitly demonstrated@57#, it shares many features with th
boson peak.

In contrast to a system of hard spheres or binary van
Waals liquids, molecular liquids also have orientational d
grees of freedom. One may ask: Does the boson peak
involve orientational motion? Indeed, one of its first interpr
tations forv-SiO2 involved coupled rotations of SiO4 tetra-
hedra @18#. Such an interpretation was supported by M
simulations forv-SiO2 @35,58# and ZnCl2 @40# and by neu-
tron scattering experiments, proving nonsoundlike contri
tions aroundvBP @59#. Dielectric loss measurements prob
the orientational dynamics only. Since these measureme
e.g., for glycerol and propylene carbonate, also exhibit a
son peak@60,61#, this gives additional evidence that th
peak may also be related to the orientational degrees of f
dom. The role of orientational modes becomes even cle
from experiments on ethanol@62,63#. Around 100 K, ethanol
can occur in several phases: a glass phase, an orientat
glass phase, a crystalline phase and a rotator phase. The
ter of mass positions of the molecules are frozen in an am
phous structure for the glass phase, and in a crystalline st
ture for the three other phases. The orientational dynami
nonergodic for the glass and the orientational glass and
godic for the crystal and the rotator phase. INS has sho
the existence of a boson peak for the orientational gl
which does not differ much from that in the glass. Even
the rotator phase there is a boson peak, but it is shifted
5-2
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MICROSCOPIC DYNAMICS OF MOLECULAR LIQUIDS . . . PHYSICAL REVIEW E 64 051505
lower frequencies. Similarly to structural glasses the orien
tional glass phase also exhibits an excess in the specific
c(T)/cD(T) @62#. These findings suggest that these exc
modes are primarily related to the orientational degrees
freedom.

In the present paper we will not calculate the density
states, but the susceptibility and correlation spectra of
collective dynamics. These quantities show the appeara
of an extra peak about a decade below the high freque
peak, where the former also originates from the orientatio
degrees of motion.

The outline of the paper is as follows. In Sec. II, we w
briefly review the derivation of the equation of motion f
the relevant correlators of rigid, linear molecules and
mode-coupling approximation. In addition, we will discu
the linearized equations. The molecular mode-coupling eq
tions are solved numerically for a liquid of dipolar ha
spheres in Sec. II D. Finally, Sec. III contains a discussion
the results and some conclusions.

II. MOLECULAR DYNAMICS

In the first part of this section we will present the equ
tions of motion for the most relevant correlation functions
a molecular liquid. The second part contains a discussio
the corresponding linearized equations, which yields inf
mation on the microscopic time scale, and in the third p
we will briefly review the mode-coupling approximation.

A. Equation of motion

We restrict ourselves to a system ofN rigid and linear
molecules with massM and moment of inertiaI. There are
two possibilities to describe molecular liquids: asite-siteor a
molecularrepresentation@64#. The latter, which will be cho-
sen here, decomposes the 5N degrees of freedom into 3N
translational and 2N orientational ones. Of particular intere
are the molecular correlatorsS(qW ,t)5„Slm,l 8m8(q

W ,t)… @5,6#.
The partial dynamical structure factors in a site-site desc
tion are linear superpositions ofSlm,l 8m8(q

W ,t) but not vice
versa@65#.

The Mori-Zwanzig formalism has been used to der
equations of motion forS(qW ,t) for a single linear molecule in
a liquid of isotropic particles@5# and for a molecular liquid
of linear @6# and arbitrary molecules@7#. Similar work has
been done in a site-site description@66#. A comparison be-
tween the tensorial and the site-site mode-coupling theo
has recently been performed for a single dumbbell in a liq
of hard spheres@67#.

It turns out that the original form of the equations of m
tion is not suitable for a numerical solution. Therefore w
have rewritten those equations as follows:

Ṡ~qW ,t !1 i(
a

qaSa~qW ,t !50, ~1a!

Ṡa~qW ,t !1 iqaJa~qW !S21~qW ,0!S~qW ,t !

1Ja~qW !E
0

t

dt8(
a8

maa8~qW ,t2t8!Sa8~qW ,t8!50.

~1b!
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with initial conditions

S~qW ,0![S~qW !, ~2!

Ṡ~qW ,0![0[Sa~qW ,0!, ~3!

Ṡa~qW ,0![2 iJa~qW !qa, ~4!

~qa! lm,l 8m85ql
a~qW !d l l 8dmm8 , ~5!

ql
a~qW !ªH q, a5T ; l ,

Al ~ l 11!, a5R ; qW ,
~6!

„Ja~qW !…lm,l 8m8[Jlm,l 8m8
aa8 ~qW !5

kBT

I a
daa8d l l 8dmm8 , ~7!

and the density–current-density correlator:

Slm,l 8m8
a

~qW ,t !5
1

N
^ j lm

a* ~qW ,t !dr l 8m8~qW ,0!&. ~8!

Here,S(qW ) andJaa8(qW ) denote, respectively, the static de
sity and current density correlation matrix and

I a5H M , a5T,

I , a5R.
~9!

This set of equations is still exact, but needs an expres

for the memory kernelsmlm,l 8m8
aa8 (qW ,t). This is where approxi-

mations come in. Their nature depends strongly on the ph
cal situation: for example,maa8 for a supercooled liquid will
be quite different from that for a liquid at higher temper
tures. We also note that instead of choosing the scalar cur
densities one could also use each Cartesian componentj lm

a i ,
i 5x,y,z, as a slow variable. This was done recently fora
5T but not for a5R in order to discuss the role of trans
verse currents on light scattering spectra@68#. The resulting
equations again are exact but involve memory kern

mlm,l 8m8
a i ,a8 i (qW ,t).

B. Linearized equations of motion

Since the memory kernels will not be independent fun
tions of the tensorial density correlationsS(qW ,t), the third
term in Eq. ~1b! is a kind of nonlinearity. Within MCT
maa8(qW ,t) is approximated by superpositions of produc
S(qW 1 ,t)S(qW 2 ,t) with qW 5qW 11qW 2, which makes obvious the
nonlinear character of the equations of motion. It is this no
linearity that leads to a slowing down of the structural rela
ation by decreasing the temperature or increasing the den
of a liquid. This behavior takes place on the liquid side a
two-step relaxation process characterized by two diverg
time scalests;uT2Tcu21/2a andt;(T2Tc)

2g wherea and
g are positive andTc is the ideal glass transition temper
ture. The time scale forts andt is determined by a micro-
scope scalet0 . t0 depends on inertia and damping effec
5-3
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where the latter are due to the regular part ofmaa8(qW ,t),
accounting for the fast motions. Because our main intere
the microscopic dynamics, we can get an estimate of
microscopic time scale by neglecting the memory term
cluding its regular part. This results in a set of linear eq
tions from which one immediately obtains for the normaliz
correlatorF(qW ,t)5S21/2(qW )S(qW ,t)S21/2(qW )

F̈~qW ,t !1V2~qW !F~qW ,t !50, ~10!

with initial conditions

F~qW ,0!51, Ḟ~qW ,0!50 ~11!

and the Hermitian frequency matrix squared

V2~qW !5S21/2~qW !(
a

~qa!2JaS21/2~qW ! ~12!

or with Eqs.~5!, ~6!, and~9!

„V2~qW !…lm• l 8m85 (
l 9m9

„S21/2~qW !…lm,l 9m9FkBT

M
q21

kBT

I
l 9

3~ l 911!G„S21/2~qW !…l 9m9,l 8m8 . ~13!

Here, some comments are in order. First, the static c
elatorsSlm,l 8m8(q

W ) and thereforeV lm,l 8m8(q
W ) are not diago-

nal in l and l 8 in general. Accordingly, translational and ro
tational modes generally are coupled to each other for gi
qW . Second, this coupling vanishes in the limitq→0, because
the static correlatorsSlm,l 8m8(q

W ) and thereforeV lm,l 8m8(q
W )

@cf. Eq.~13!# become diagonal and independent of each ot
for an isotropic liquid:

V lm,l 8m8~qW !→v l~q!d l l 8dmm8 ~14!

with

v0~q!5A kBT

MS0
q, ~15a!

v l~q!5AkBT

ISl
Al ~ l 11!, l .0, ~15b!

the translational and rotational frequencies forq→0 andSl

[Sl0,l0(qW 50). v0(q) describes the well knownacoustic
isothermal sound wave dispersion andv l(q) the optic rota-
tional frequencies forl .0.

Third, the limitq→0 was already discussed for a molec
lar liquid using asite-site description@69#. These authors
also set the corresponding memory matrix to zero, which
the way, is completely equivalent to a short time expans
of the equation of motion in leading order. But there t
coupling between the partial dynamical structure factors d
not vanish forq→0. In this respect the choice of a molecul
05150
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representation that takes care of the isotropy of the mic
scopic Hamiltonian is the most natural one, at least foq
→0 andt→0.

So far we have considered theliquid phase only. The
idealized version of MCT, which neglects so-called hoppi
processes, is a theory developed on the liquid side of
glass transition, because it uses as an input static correla
in equilibrium. It may also be used below, but close to t
transition point where the singular behavior still dominat
Whether MCT is even capable of describing dynamical f
tures far below the glass transition point is unclear. Nev
theless, we will also apply MCT for parameters deeper in
glassphase. An ideal glass is a nonergodic phase with n
ergodicity parameters~not normalized!

Flm,l 8m8~qW !5 lim
t→`

Slm,l 8m8~qW ,t ! ~16!

that are nonzero. One can easily prove that Eqs.~1b! then
imply that

Clm,l 8m8
aa8 ~qW !5 lim

t→`

mlm,l 8m8
aa8 ~qW ,t ! ~17!

are nonzero too, and that

(
a,a8

qa$@Cbb8~qW !#21%aa8qa85@S~qW !2F~qW !#F21~qW !S~qW !.

~18!

Therefore, we introduceŜ(qW ,t) andm̂aa8(qW ,t) such that

S~qW ,t !5F~qW !1Ŝ~qW ,t !, ~19!

maa8~qW ,t !5Caa8~qW !1m̂aa8~qW ,t !, ~20!

in analogy with the approach in@57#. Substitution of Eq.~19!
and Eq.~20! into Eq. ~1! yields

Ṡ̂~qW ,t !1 i(
a

qaSa~qW ,t !50, ~21a!

Ṡa~qW ,t !1 iqaJa~qW !S21~qW !Ŝ~qW ,t !

1Ja~qW !E
0

t

dt8(
a8

m̂aa8~qW ,t2t8!Sa8~qW ,t8!

1 iqaJa~qW !S21~qW !F~qW !

1Ja~qW !(
a8

Caa8~qW !E
0

t

dt8Sa8~qW ,t8!50 ~21b!

with initial conditions

Ŝ~qW ,0!5S~qW !2F~qW ! ~22!

and

lim
t→`

Ŝ~qW ,t !50, lim
t→`

m̂aa8~qW ,t !50. ~23!
5-4
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With the same argumentation as above we linearize E
~21b! by takingm̂aa8(qW ,t) to be zero. Then, taking the tim
derivative of Eq. ~21b! and using Eq.~21a! we get for
Ŝa(qW ,t)[(Ja(qW ))21/2Sa(qW ,t)

Ŝ
¨a~qW ,t !1(

a8
~V̂2~qW !!aa8Ŝa8~qW ,t !50 ~24!

with the frequency matrix squared

V̂2~qW !aa85„Ja~qW !…1/2@qaS21~qW !qa82Caa8~qW !#„Ja8~qW !…1/2.
~25!

Integration of Eq. ~21a! from 0 to t and substituting
*0

t dt8Sa8(qW ,t8) from Eqs.~21b! with m̂aa8[0 allows one to

expressŜ(qW ,t) by Ŝa(qW ,t):

Ŝ~qW ,t !5 iF~qW !S21~qW ! (
a,a8

qa@„Cbb8~qW !…21#aa8

3„Ja8~qW !…1/2Ŝa8~qW ,t ! ~26!

Like V, the matrix„V̂aa8
… is nondiagonal inl ,l 8 and in

a, a8. This again leads to a coupling between the trans
tional and orientational modes, which are the eigenmode
„V̂aa8

…. Now it is ~see@6#!

Caa8~qW !5q̃aC̃aa8~qW !q̃a8 ~27!

with

lim
qW→0

C̃lm,l 8m8
aa8 ~qW !5” 0 ~28!

and

~ q̃a! lm,l 8m85q̃lml8m8
a

5q̃l
ad l l 8dmm8 , ~29!

q̃l
a5H q, ~a,l !5~T,0!,

1, ~a,l !5” ~T,0!,
~30!

not to be confused withqa. Therefore, we get from Eq.~25!
with Eqs.~5!, ~6!, ~27!, and~29!,
s

05150
s.
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~V̂ 2~qW !!00,00
TT 5

kBT

M
q2~S21~qW !!00,00@11~S~qW !C̃TT~qW !!00,00#

~31!

for the acoustic part of„(V̂2)aa8
…. Taking into account that

we have not normalizedCaa8 andC̃aa8, the result Eq.~31! is
completely analogous to the result derived in@57# for
„V̂(qW )…2 for simple one-component liquids. However, w
note that in contrast to@57# the equations of motion for the
rescaled correlatorsŜ(qW ,t) andm̂aa8(qW ,t) are not covariant,
due to the splitting of the current density into a translatio
and a rotational part. Therefore„V̂2(qW )…aa8 is not a straight-
forward generalization ofV̂2(qW ) for simple liquids to mo-
lecular liquids.

The coupling between translational and orientatio
modes in the liquid and in the glass already on the lin
level of the equations of motion is not surprising due to t
interaction between translational and orientational degree
freedom. But it is also obvious that memory effects will le
to additional couplings, and it is this point, that we will in
vestigate in Sec. III.

C. Mode-coupling theory

In the preceding subsection we have neglected
memory kernels. Approaching the glass transition signific
memory effects occur. Thereforemaa8 must be taken into
account. Using mode-coupling theory an approximate
pression for the slow partmaa8(qW ,t) has been derived which
leads to a closed set of equations forS(qW ,t). This has been
done for molecular systems using the molecular represe
tion @5–7# and a site-site description@67#. For a liquid of
linear molecules we will use

mlm,l 8m8
aa8 ~qW ,t !'

AI aI a8
kBT

G lm,l 8m8
aa8 ~qW !d~ t !1„mlm,l 8m8

aa8 ~qW ,t !…slow

~32!

where the first and second terms on the right-hand side
Eq. ~32! accounts for the fast and the slow contribution
respectively. MCT yields@6#
~mlm,l 8m8
aa8 ~qW ,t !!slow5

1

2N (
qW 1qW 2

qW 11qW 25qW

(
l 1m1
l 2m2

(
l 18m18

l 28m28

Vlm,l 8m8
aa8 ~qW uqW 1l 1m1 ,l 18m18 ;qW 2l 2m2 ,l 28m28!Sl 1m1 ,l

18m
18
~qW 1 ,t !Sl 2m2 ,l

28m
28
~qW 2 ,t !.

~33!
r-
The explicit expressions for the verticesV are given in Ref.
@6#. Equations~1! together with Eqs.~32! and ~33! are a

closed set of equations forSlm,l 8m8(q
W ,t) which need the

damping coefficientsG lm,l 8m8
aa8 (qW ) and the static correlator
Slm,l 8m8(q
W ) as a input. The latter uniquely determine the ve

tices.

It is obvious that the MCT polynomial„mlm,l 8m8
aa8

…slow leads

to additional coupling between the correlatorsSlm,l 8m8(q
W ,t).
5-5
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Due to this nonlinearity the MCT equations~1!, ~32!, and
~33! can only be solved numerically. We have perform
such a numerical solution for dipolar hard spheres, one of
simplest systems involving translational and rotational m
tion.

D. Dipolar hard sphere liquid

The investigation of dipolar hard spheres has the adv
tage that approximate analytical expressions@70# for the
static correlators are known.

We consider a system ofN hard spheres with homoge
neous number densityr, diameterd, massM, moment of
inertia I 5 1

10 Md2, and dipolar momentm. The origin of the
body-fixed frame is chosen to coincide with the center
mass of each sphere, which is the natural choice. Since
density of the particles is homogeneous, the center of ma
equal to the center of the spheres. The reader should note
the MCT equations~1!, ~32!, and~33! and even the origina
exact equations of motion Eqs.~1! are not covariant~i.e.,
invariant in their form! under a shift of the reference poin
for the body-fixed frame. In order to get covariant equatio
one has to project on the individual Cartesian component
jW lm

T (qW ) and jW lm
R (qW ). Nevertheless, we think that the prese

equations are a reasonably good approach to the dynami
molecular liquids, because of the natural choice of the re
ence frame. Of course, this point needs additional invest
tion. The advantage of MCT in site-site representation@67# is
that this problem does not occur, because no reference p
must be chosen.

The physical control parameters are the packing frac
f5(p/6)rd3 and the temperatureT. In the following the
length unit is chosen such thatd51. In addition we choose
M51 andm51. This choice means that timet and tempera-
ture T are measured in units ofM1/2d5/2/m and kB

21m2/d3,
respectively. In the following we will use T*
5T/(m2/kBd3) as dimensionless temperature.

As already stated, the MCT equations~1!, ~32!, and~33!

requireG lm,l 8m8
aa8 (qW ) andSlm,l 8m8(q

W ) as input. Throughout this

paper we will put all damping coefficientsG lm,l 8m8
aa8 to zero.

The static correlatorsSlm,l 8m8(q
W ) are obtained from Wer-

theim’s solution, who used the Percus-Yevick and me
spherical approximations@70# This leads to

Slm,l 8m8~qW !'H Slm~q!d l l 8dmm8 , l 50,1, l 850,1,

d l l 8dmm8 otherwise.
~34!

The vertices of the memory kernels are bilinear in the dir
correlation functions:

clm~q!5
4p

r F12
1

Slm~q!G . ~35!

Since we have chosen the so-calledq frame @71# @for
which qW 5qW 0[(0,0,q)# the correlators and the kernels b
come diagonal inm andm8 @6#. The fact that the static cor
relators are diagonal inl and l 8 and are structureless fo
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l , l 8>2 is an artifact of both approximations. Additiona
shortcomings are~i! the independence of the center of ma
correlatorS00(q) of temperature and~ii ! the smooth behavior
of Slm(q) at f rcp.0.64, the value for random close packin
The static correlators from Wertheim’s approach exhibi
divergency atf5fmax51, only. We will come back to these
points below.

Due to Eqs.~34! and ~35! mode coupling occurs only
between the time-dependent correlators withl 1 ,l 18,l 2 ,l 28
smaller than or equal to 1. In order to simplify the MC
equations as much as possible we use the additional app
mations~in the q frame!

Slm,l 8m8~qW ,t !'H Slm~q,t !d l l 8dmm8 , l 50,1,l 850,1,

0 otherwise,
~36!

mlm,l 8m8
aa8 ~qW ,t !'H mlm

aa8~q,t !d l l 8dmm8 , l 50,1,l 850,1,

0 otherwise.
~37!

In Sec. II B we showed that the translational and orien
tional dynamics is already coupled on the linear level due
nondiagonality inl and l 8. Above we have chosen all corr
elators to be diagonal inl and l 8. Thus a coupling between
S00(q,t) and Slm(q,t) with l .0 can originate only from
mode-coupling effects. Thus, our diagonalization approxim
tion ~which is even exact in our case due to the restriction
l and l 8 to 0 and 1) allows us to study the influence of t
mode-coupling terms on the microscopic dynamics with
interfering with the direct coupling mechanism between
correlatorsSlm(q,t) discussed in Sec. II B.

The memory kernels@cf. Eq. ~33!# in the q frame

mlm,l 8m8
aa8 (qW ,t)5mlm

aa8(q,t)d l l 8dmm8 contain the following
couplings@6#:

m00
aa8~q,t !↔S00~q1 ,t !S00~q2 ,t ! and

S1m1
~q1 ,t !S1m2

~q2 ,t !, ~38!

m1m
aa8~q,t !↔S00~q1 ,t !S1m2

~q2 ,t ! and

S1m1
~q1 ,t !S00~q2 ,t !. ~39!

Equation ~38! shows that the center of mass correla
S00(q,t) may undergo a glass transition independently fro
the dipoles whereas Eq.~39! demonstrates that the dipole
are ‘‘slaved’’ by the center of mass dynamics and can fre
only if S00(q,t) has become nonergodic. In order th
S00(q,t) andS1m(q,t) freeze simultaneously the vertices
the bilinear terms in Eq.~39! must be large enough. Thi
happens at low enough temperatures. SinceSl ,2m(q,t)
[Sl ,m(q,t) @6#, there are three independent correlators,
center of mass correlation functionS00(q,t) and two dipolar
onesS1m(q,t), m50,1. In the following we consider the
normalized correlatorsf lm(q,t)5Slm(q,t)/Slm(q).

The three static correlators are shown in Fig. 1 for tw
different pairs of (f,T* ). Three main features can be see
5-6
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First, theq variations ofS00 of the ‘‘longitudinal’’ dipolar
correlator and ofS10 are rather similar to each other an
resemble that of a simple liquid with a well pronounced m
peak atqmax'2p/ā, whereā'd51, the mean distance be
tween nearest neighbors. The ‘‘transverse’’ dipolar correla
S11(q) behaves quite differently. It exhibits only one peak,
q50, and it becomes almost structureless forq.nq, the
peak width at half maximum. Second,S11(q50) increases
with decreasing temperature, whereasnq decreases. This
behavior signals medium range orientational order due
precursor of ferrofluid order. This order is induced by e
hancement of the dipolar interactions at lower temperatu
with respect to the hard core repulsion. Third,S1m(q50)
depends onm, because of the long range nature of the dip
lar interactions.

In addition to the truncation atl 51 we must also truncate
and discretize theq variable. Since the reduction~for N

→`) to a single integral of the sum overqW 1 andqW 2 in Eq.
~33! for simple liquids@72# cannot easily be used for mo
lecular liquids the number of steps to calculate this sum
creases quadratically with the number ofq values, instead of
the linear increase for simple liquids. This fact makes
numerical solution of the molecular MCT equations rath
CPU time consuming. Therefore we decided to choos
nonequidistant distribution of 30q values betweenqlow
.0.51 andqup.40. These values were generated by
nonlinear relation

qn5
1

a
arctanh~nDx!, n51,2, . . .,30, ~40!

with Dx5tanh(aqco)/31 andqco550. The parametera has
been chosen such that the main peak of, e.g.,S00(q), is still
in the linear regime of arctanh. The right of Fig. 1 demo
strates this fora50.065. It is obvious from Eq.~40! that for
q,a21 the qn are almost equidistant and forq.a21 they
become more and more diluted. Since the largeq regime is
not as important as the range around the main peak inS00(q)

FIG. 1. Theq dependence of the static structure factorsSlm(q)
for ( lm)5(0,0),(1,0),(1,1) and two different pairs of (f,T* ) in-
dicated by the full circles in Fig. 2 below: (0.53,0.3)~left!,
(0.381,0.04)~right!. Dq is the peak width ofS11(q) at half maxi-
mum. The symbols indicate the discretizedq values~see text!.
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or that atq50 in S11(q) ~which drive the glass transition!
our choice forqn should not influence our results, at lea
qualitatively. We have solved the molecular MCT equatio
~1!, ~32!, and~33! in time space using an algorithm alread
developed to solve the MCT equations for simple liqui
@73#. However, our numerical procedure differs from that
Götze et al. @74# for the single dumbbell in an isotropic liq
uid. These authors introduced an effective memory ker
~independent ofa anda8) and an effective microscopic fre
quency.

Before we come to the dynamics let us briefly discuss
phase diagram for a glass transition that has already b
calculated@6,75#. Throughout the rest of this paper all th
results are given in theq frame. The modification with re-
spect to Refs.@6,75# of the q discretization leads to a sma
quantitative change of the glass transition lines, but with
changing the topology. Therefore we have again calcula
the nonergodicity parameters

f lm~q!5 lim
t→`

f lm~q,t ! ~41!

as a function off andT* , from which the phase diagram i
obtained~Fig. 2!. Since f cannot exceedf rcp.0.64, the
value for random close packing of hard spheres, we h
plotted only f<f rcp . There are two significant tempera
turesT1* andT2* . At T1* the critical linef typeA

c (T* ) ~dashed
line in Fig. 2! reachesf5f rcp and atT2* it merges into the
critical line f typeB

c (T* ) ~solid line in Fig. 2!. These two tem-
peratures have the following meaning. ForT* .T1* an in-
crease off leads atf typeB

c (T* ) to a glass transition for the
center of mass motion, but not for the dipoles. ChoosingT*
betweenT1* andT2* , again a glass transition of the center
mass motion occurs atf typeB

c (T* ). But on increasingf be-
yond f typeB

c (T* ) a spin-glass-like transition for the dipole

FIG. 2. Glass transition phase diagram for dipolar hard sphe
The solid and the dashed line are critical lines at which a disc
tinuous ~type B) and a continuous~type A) glass transition takes
place between the phases I, II, and III.A, B, C, andD denote the
various paths on which we have investigated the control param
dependence of the dynamics. The full circles indicate the two po
at which the static correlators in Fig. 1 and the microscopic frequ
cies in Fig. 3 below were calculated. ForT1* andT2* , see text.
5-7
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occurs atf typeA
c (T* ). Below T2* , center of mass and dipola

dynamics freeze simultaneously atf typeB
c (T* ). For T*

.T2* the critical valuef type B
c (T* ) is identical to that for

hard spheresfHS
c . For the present choice ofq discretization

we find fHS
c .0.5265, which does not differ much from th

more precise valuefHS
c .0.516 obtained with 100 equidis

tant q values@76#.
The glass transition at high and low temperatures

driven by different physical mechanisms. At high tempe
tures it is the so-called cage effect, which leads to the fre
ing of the liquid into a nonergodic phase, due to an incre
with increasing density of the main peak of the center
mass correlatorS00(q). Lowering the temperature enhanc
the role of the dipolar interactions, which leads to a stro
increase of the peak atq50 of the ‘‘transverse’’ dipolar
correlatorS11(q). The increase of the dipolar correlations
accompanied by a decrease of the center of mass correla
~cf. Fig. 1!, and they take over the role of the cage effe
This behavior is reflected in the nonergodicity paramete
f 11(q50) increases with decreasing temperature much m
strongly thanf 00(qmax). For details the reader is referred
@6#.

The properties of the phase diagram require some m
comments.~i! the T* independence off typeB

c (T* ) for T*
.T1* originates from theT* independence ofS00(q), which
is an artifact of Wertheim’s solution. Removing this artifa
will result in a T* dependence off typeB

c (T) for all T* with
limT* →`f typeB

c (T* )5fHS
c , since dipolar interactions will be

irrelevant at infinite temperature.~ii ! The existence ofT1*
relies on the fact thatf typeA

c (T* ) approaches the valuef rcp

at a finite temperature. This is true when the static correla
within the Percus-Yevick approximation are used. Whet
or not an improved theory reproducing the singular behav
at f rcp would lead to the same conclusion is not obviou
Since such a theory does not exist, we cannot exclude
possibilities thatf typeA

c (T* ) approachesf rcp only at T*
5`.

Now we turn to the time- or frequency-dependent featu
of dipolar hard spheres. We have studied the control par
eter dependence of the dynamics along the pathsA, B, C, and
D, indicated in Fig. 2. In contrast to the determination of t
long time behavior, inertia effects will play an important ro
in the microscopic time or frequency regime. In the liqu
these inertia effects enter through the microscopic freque
matrix V(qW ). Due to the diagonality ofS(qW ) the matrix
V(qW ) becomes diagonal with diagonal elements~in the q
frame! that follow from Eq.~13!:

V lm~q!5AFkBT

M
q21

kBT

I
l ~ l 11!G Y Slm~q!, ~42!

restricted tol 50,1. Figure 3 depictsV lm(q) for two differ-
ent pairs (f,T* ) in the vicinity of the critical line
f typeB

c (T* ). This figure reveals two features which ste
from the properties ofSlm(q) discussed above. Firs
V1m(q50) depends onm. Second, and most important,
‘‘softening’’ of the ‘‘optic’’ frequency V11(q) with q→0 is
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observed for decreasing temperatureT* , for which the role
of dipolar interactions~compared to the hard core repulsio!
becomes more and more enhanced. This ‘‘softening’’ com
from the strong increase ofS11(q) for q→0 ~see Fig. 1! and
has its physical origin in the occurrence of a medium ran
orientational order of the dipoles. The inverse width (Dq)21

of the peak inS11(q) at q50 is a measure of the length sca
of this orientational order. (Dq)21 increases with decreasin
temperature~see Fig. 1!. We will come back to this point in
the final section.

The microscopic frequencies in the glass phase are g
by the ‘‘renormalized’’ frequency matrix@„V̂2(qW )…aa8#.
Taking again into account the diagonalization with respec
l and l 8 we obtain from Eq.~25! with Eqs.~5! and ~27!

„V̂lm
2 ~q!…aa85

kBT

~ I aI a8 !1/2

1

Slm~q!

3@ql
aql

a81q̃l
aq̃l

a8C̃lm
aa8~q!Slm~q!#.

~43!

SinceC̃00
aa8(q) is different from zero fora5a85T only, we

get with Eqs.~6!, ~18!, ~27!, and~29!:

V̂00~q!5V00~q!/@12 f 00~q!#1/2. ~44!

C̃1m
aa8(q) is nonzero for all (a, a8). Therefore two eigen-

frequenciesV̂1m
6 (q) exist for eachm. V̂00(q) and V̂1m

6 (q)
are shown in Fig. 4. The ‘‘renormalized’’ frequencies requ
the nonergodicity parameters as input. The latter become
accurate for smallq, because the discretization of theq val-
ues influences the results much more strongly for decrea
q. Therefore we do not present data belowq51. Of course,
V̂00(q)→ ĉq andV̂1m

6 (q)→V̂1m
6 (0).0 for q→0. Note that

~i! V̂11
6 (q) does not vary much withq and ~ii ! V̂11

2 (q)

!V̂00(qmax.7).
Now let us turn to Eq.~1! including the time-dependen

memory kernels given by Eqs.~32! and~33!. From the solu-
tions of these MCT equations we get the normalized corre

FIG. 3. q dependence of the microscopic frequenciesV lm(q) for
( l ,m)5(0,0) ~solid!, (1,0) ~dotted!, and (1,1) ~dashed!. ~a! f
50.381, T* 50.04 and~b! f50.53, T* 50.3, indicated in Fig.
2 by the full circles.
5-8
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tors f lm(q,t) or equivalently the corresponding susceptib
ity spectra x lm9 (q,v) related to the correlation spectr
f lm9 (q,v) by x lm9 (q,v)5vf lm9 (q,v). Figures 5 and 6 show
f lm(q,t) and x lm9 (q,v) for q.4.7 along pathA in Fig. 2.
Figure 5 clearly demonstrates for all correlators the form
tion of a plateau and the tremendous slowing down of
relaxation with increasingf, which stops at fc(T* )
.0.3782.

The dynamical features are better recognized inv space.
Before we discuss these results, let us comment on the q
ity of our v-dependent data. Because glassy dynamics
volves many decades in time one has to use a special a
rithm, which decimates the time step with increasing tim
i.e., one chooses an initial time incrementh to discretize the

FIG. 4. q dependence of the renormalized microscopic frequ

cies forf50.53, T* 50.04.~a! V̂00(q) is shown as solid line; the

positionsv̂h f andv̂op obtained fromf009 (q,v) are presented by the

full circles and squares, respectively.~b! V̂10
6 (q) and V̂11

6 (q) are
shown as circles and squares, respectively.

FIG. 5. Linear-logarithmic plot off lm(q,t) at q.4.7, TA*
50.04, andf along pathA in Fig. 2. The dashed line correspond
to the results atf.fc.0.3782.
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time axis@73#. After a certain number of time steps the in
crement is doubled, etc. Although thet-dependent data
shown in Fig. 5 look continuous, they exhibit tiny discon
nuities of the correlators and of their first time derivatives
those times at which the increment is doubled. These disc
tinuities which could be diminished by an increase of t
CPU time, lead to the wiggles which can be seen, e.g.
Fig. 6. However, we have checked by variation of the para
etersh, the boundary values of the Fourier integrals, etc., t
the features we will address below are not influenced by
wiggles. Further, the low frequency wing of thea-peak for
x lm9 (q,v) in Fig. 6 shows a rather small deviation from
linear v-dependence, as it should. This failure is due to
choice of the lower bound for the Fourier integral. If this
taken to be zero, the wiggles become more pronounc
Therefore, choosing a nonzero bound is a compromise
tween reduction of the wiggles and a small deviation fro
linearity in v for v→0. We have also used a spline tec
nique for smoothing the data in time space. The Fou
transform of those data reproduced all the relevant featu
obtained from the originalt-dependent correlators.

Let us now discuss the spectra. Forf,fc(TA* ), i.e., in
the liquid phase, Fig. 6 left column reveals the existence
three peaks forx009 (q.4.7,v) and two peaks forx119 (q
.4.7,v) andx109 (q.4.7,v). The low frequency peak in al
spectrax lm9 (q.4.7,v) is the a peak related to the slowing
down of the structural relaxation~translational and rotationa
degrees of freedom!. x009 (q.4.7,v) has a high frequency
~hf! peak atvh f'10 and an additional peak atvop.1, i.e.,
about one decade below the hf peak.x109 (q.4.7,v) and
x119 (q.4.7,v) exhibit only one peak in the microscopic fre
quency domain atv'vop . Below we will show that the
peak inx009 (q.4.7,v) at v'vop originates from the orien-
tational dynamics. Therefore we call it the ‘‘orientationa
peak~subscriptop).

The situation forf.fc(TA* ), i.e., in the glass phase, i

-
FIG. 6. Log-log plot ofx lm9 (q,v) at q.4.7, TA* 50.04, andf

along pathA in Fig. 2: liquid ~left column! and glass~right column!.
The dashed line corresponds to the results atf.fc.0.3782. f
values forx109 (q,v) andx119 (q,v) are the same as forx009 (q,v).
5-9



n
e
,
ke
s

ic

a
il
f
-
an

ro
he

as

e

-
s
st

ity
ep

i-

-

ths
ted

-

s a ult

t at
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similar with two exceptions~cf. right column of Fig. 6!. First
it is clear that there is no longer ana peak and second a
additional peak located between the orientational and th
peaks exists inx009 (q.4.7,v) for f50.53 and 0.60, i.e.
deep in the glass phase. A further ‘‘peak’’ looking more li
a shoulder even appears forf50.6. Such additional peak
can also be seen inx109 (q.4.7,v) and x119 (q.4.7,v) ~cf.
right column of Fig. 6!.

In the following we will concentrate on the microscop
regime. Therefore we can use a linearv scale, which allows
us to recognize thev and f dependence~which we have
described above! much better for 0.1,v,10. This is done
in Fig. 7 for the data from Fig. 6. Both microscopic peaks
vop'1 andvh f'10 can clearly be seen in the compressib
ity spectrumx009 (q.4.7,v). Whereas the intensity of the h
peak increases with increasingf, the orientational peak be
comes more pronounced when approaching the glass tr
tion from the liquid side. In the glass phase atf50.44 and
f50.48 it is less prominent but again becomes more p
nounced forf.0.5, although its intensity decreases. T
appearance of the intermediate peak forf50.53 andf
50.60 atv'6 andv'8, respectively, can be observed,
well as the shoulder atv'4. Due to the linearv scale we
clearly see thatx109 (q.4.7,v) also exhibits an intermediat
peak for f50.53 and f50.60, i.e., x109 (q.4.7,v) re-
semblesx009 (q.4.7,v) but with the oppositef dependence
of the intensity of the orientational and hf peaks forf
.fc(TA* ). x119 (q.4.7,v), which is proportional to the di-
electric losse9(q.4.7,v), possesses only one well pro
nounced peak atv'vop . To check how far the feature
depend on the path through a critical point, we have inve
gatedx lm9 (q.4.7,v) along pathC ~see Fig. 1! for which f
5fc50.3786 is fixed. This allows to study how far dens
and temperature variation lead to similar or different susc
tibility spectra. The results for pathC are given in Fig. 8.
x009 (q.4.7,v) shows an orientational and a hf-peak atvop

FIG. 7. x lm9 (q,v) on linear scales atq.4.7, TA* 50.04, andf
along pathA in Fig. 2. The dashed line corresponds to the result
f.fc.0.3782.
05150
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'1 andvh f'10, respectively. Their corresponding intens
ties behave qualitatively similarly for decreasingT* as we
found along pathA for increasingf. Intermediate peaks be
tween the orientational and hf peaks do not occur.x109 (q
.4.7,v) differs from the result along pathA, whereas
x119 (q.4.7,v) looks similar.

Translational and orientational dynamics freeze on pa
A and C simultaneously. Therefore we have also calcula
x lm9 (q.4.7,v) on pathB for fixed T* 50.30 wheref00(q,t)
freezes atfc

HS.0.5265 first, whereasf lm(q,t) undergoes a
spin-glass-like transition atf typeA

c (T* 50.3).0.62. The cor-
responding results are presented in Fig. 9.x009 (q.4.7,v) and
x lm9 (q.4.7,v) exhibit a well pronounced main peak. Its po

t

FIG. 8. x lm9 (q,v) on linear scales atq.4.7, fC50.3786, and
T* along pathC in Fig. 2. The dashed line corresponds to the res
at T* .Tc* .0.04.

FIG. 9. x lm9 (q,v) on linear scales atq.4.7, TB* 50.3, andf
along pathB in Fig. 2. The dashed line corresponds to the resul
f.fc.0.5265. Becausex lm9 (q,v) does not vary much withf we
have not labeled the various curves withf.
5-10
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sition depends sensitively onf in the case ofx009 (q
.4.7,v) and is practically f independent forx1m9 (q
.4.7,v). The latter quantity also posesses a small pea
v'10, which originates from the translational motion v
translation-rotation coupling.

A peak in the susceptibility spectra can be of either rel
ational or oscillatory origin. To distinguish between the tw
types of behavior one must study thev dependence of the
correlation spectraf lm9 (q,v). Spectra from neutron scatte
ing are superpositions off lm9 (q,v) @65#. A peak in
f lm9 (q,v) at v.0 proves the existence of an oscillatio
whereas a peak atv50 is of purely relaxational type. The
corresponding peak width is a measure of the damp
These correlation spectra are shown in Figs. 10 and 11
pathA and pathB, respectively. Forf,fc(T* ) ~not shown
in Figs. 10 and 11! there is no peak at nonzero frequenc
except for the hf peak. Therefore the orientational peak
found inx lm9 (q.4.7,v) in the liquid phase is a purely relax
ational excitation. Now let us discuss the correlation spe
in the glass phase. Figure 10 shows that in the glass,
close to the critical packing fraction, there is a hf peak
v̂h f'10. Deeper in the glass the position of that hf pe
shifts to higher frequencies and an orientational peak
v̂op'1 appears. On decreasingf even more an intermediat
peak between the orientational and hf peaks is produce
well. The positions of the orientational and intermedia
peaks shift to higher frequencies with decreasingf like the
hf peak, due to the increase of the glass stiffness. Thf
dependence off lm9 (q.4.7,v) at much higher temperatur
T* 50.3 ~path B in Fig. 2! is presented in Fig. 11. We ob
serve similar behavior as in Fig. 10, i.e., besides the hf p
at v̂h f520–60 for 0.56<f<0.63 there occurs an orienta
tional peak atv̂op'1, and forf50.60 andf50.63 a shoul-
der at aboutv'20 that corresponds to the intermediate pe
in Fig. 10.

FIG. 10.f lm9 (q.4.7,v) on linear scales in the glass phase alo
path A in Fig. 2, i.e., T* 50.04 andf50.381 ~solid!, f50.44
~dotted!, f50.48 ~dashed!, f50.53 ~long-dashed!, and f50.6
~dot-dashed!.
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One of the conclusions we can draw fromx lm9 (q
.4.7,v) andf lm9 (q.4.7,v) is that there is an orientationa

peak atvop'v̂op'1 roughly one decade below the hf pea
The hf peak is related to a damped oscillation for the inv
tigated range ofT* and f, whereas the orientational pea
changes its character from purely relaxational to damped
cillational behavior on going from the liquid to the glas
Since the dipolar spectrax lm9 (q.4.7,v) and f lm9 (q
.4.7,v) have a main peak at aboutv'1 it is tempting to
associate the orientational peak inx009 (q.4.7,v) and
f009 (q.4.7,v) with the orientational degrees of freedom a
their coupling ~via mode-coupling effects! to the transla-
tional ones. If this interpretation is correct then the orien
tional peak must exhibit an isotope effect with respect to

FIG. 11. f lm9 (q.4.7,v) on linear scales forT* 50.30 andf
along pathB in Fig. 2. The dashed line corresponds to the resul
f.fc.0.5265. Becausef lm9 (q,v) does not vary much withf we
have not labeled the various curves withf.

FIG. 12. x lm9 (q.4.7,v) at f50.381, T* 50.04 for I 5
1

10

~solid!, 1 ~dotted!, and 10~dashed!.
5-11
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change of the moment of inertiaI. Figure 12 presents
x lm9 (q.4.7,v) at TA* 50.04, f50.381 for I 51/10 ~the
correct value for a hard sphere withM51 and d51 and
homogeneous mass distribution!, 1, and 10. From this resul
we find

vop}
1

AI
. ~45!

This type of isotope effect also occurs forf lm9 (q,v), which
is shown in Fig. 13 forf lm9 (q.4.7,v) at TA* 50.04, f
50.530, and forI 51/10, 1, and 10. This result yields:

v̂op}
1

AI
. ~46!

The approximate scaling ofvop andv̂op with 1/AI strongly
supports the orientational origin of the orientational pe
Sincevh f andv̂h f are rather insensitive to a change ofI their
origin must lie in the translational motion.

So far we have not studied theq dependence of all o
these peaks. Since this may further elucidate the feature
the several peaks, we presentx lm9 (q,v) at TA* 50.04, f
50.381 in the glass but near the glass transition a
f lm9 (q,v) at TA* 50.04, f50.53 deeper in the glass i
Figs. 14 and 15, respectively. The result forx009 (q,v) shows
a nearlyq-independent position of the orientational peak
vop'1 for 1.0<q<10.6, whereas the positionvh f of the hf
peak changes withq. A similar q sensitivity holds for the
position of the main microscopic peak inx lm9 (q,v) for m
50 and 1. The result forf lm9 (q,v) yields the sameq inde-

pendence of the orientational peak atv̂op.1 and a high
sensitivity of the position of the hf peak atv̂h f'10. The
high frequency peak is essentially absent within a ’’w
dow’’ aroundq56.5 and appears below and above that w
dow.

FIG. 13. f lm9 (q.4.7,v) at f50.53, T* 50.04 for I 5
1

10

~solid!, 1 ~dotted!, and 10~dashed!.
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Finally, let us comment on the dependence of the pe
on T* andf as well as ona, which characterizes the distri
bution of the values forq @cf. Eq. ~40! and Fig. 1#. Let us
start with thea dependence. Figure 16 presentsx009 (q̄max,v)
at TA* 50.04, f50.381 for three different values ofa.

q̄max, which depends ona has been chosen as thatq value
closest to the main maximum ofS00(q). Although the peak
position and also the intensity vary witha the qualitative
features do not depend ona, at least for reasonably chose
values ofa.

The T* dependence of the positionvop and the height
hop of the orientational peak forq.4.7 is shown in Fig.
17~a! for fD50.525 along pathD in Fig. 2. The correspond
ing f dependence for the sameq value andTA* 50.04 along
pathA is given in Fig. 17~b!. hop follows a linearT* depen-
dence betweenT* 50.04 ~the lowest temperature we hav
studied! andT* '0.1. In the temperature region wherevop

FIG. 14. q dependence ofx lm9 (q,v) at f50.381,T* 50.04 for
q.2.0 ~solid!, q.4.7 ~dotted!, q.5.3 ~dashed!, q.6.5 ~long-
dashed!, andq.9.8 ~dot-dashed!.

FIG. 15. q dependence off lm9 (q,v) at f50.53, T* 50.04 for
q.2.0 ~solid!, q.4.7 ~dotted!, q.5.3 ~dashed!, q.6.5 ~long-
dashed!, andq.9.8 ~dot-dashed!.
5-12
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has a minimum,hop shows a crossover to a constant. As c
be observed from Fig. 17b the positionvop and the height
hop are almost constant belowfc(TA* 50.04).0.3782 and
increase with increasingf above that value.

III. DISCUSSION AND CONCLUSIONS

Recently we extended the mode coupling theory
simple or binary liquids@1–4# to molecular liquids@6,7,68#.
This was done within a molecular representation, wh
separates translational from orientational degrees of freed
This molecular theory has already been applied and te
for diatomic molecules@77,12,13# and water molecules with
the SPC/E potential@7,14#. These tests were restricted to
comparison of the nonergodicity parameters and critical a
plitudes~for diatomic molecules only! from molecular MCT
with the corresponding quantities from a MD simulation.
satisfactory agreement between MCT and MD simulat
was found. So far no dynamical results have been de
mined from mode-coupling theory formolecular liquids. The
only solution of the time-dependent MCT equations for
system with orientational degrees of freedom was obtai
recently for the orientational correlators of a single dumbb
in an isotropic liquid@67,56#. In the present paper we hav
solved the time-dependent molecular MCT equations fo
system of dipolar hard spheres. This is one of the simp
systems involving translational and orientational degrees
freedom. In addition, it has the advantage that the static

FIG. 16. a dependence ofx009 (q̄max,v) at f50.381, T*
50.04 fora50.06 ~dashed!, 0.065~solid!, and 0.068~dotted!.

FIG. 17. ~a! Temperature dependence of the positionvop (s)
and heighthop (h) ~multiplied by 10) of the orientational peak fo
q.4.7 andfD50.525 along pathD in Fig. 2. ~b! Dependence on
the packing fraction of the positionvop (s) and heighthop (h)
~multiplied by 10) of the orientational peak forq.4.7 andTA*
50.04 along pathA in Fig. 2.
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relators which are the input quantities for the MCT equatio
are known analytically within some approximations. The
approximations make the tensorial correlators in theq frame

f lm,l 8m8(q
W 5qW 0 ,t)5f lm(q,t)d l l 8dmm8 diagonal in l and l 8.

In addition they lead to a restriction off lm(q,t) to l 50,1
only. This means that our calculations yield information
center of mass and dipolar dynamics.

The major result we have found in the microscopic fr
quency regime is the existence of an orientational peak
vop(liquid)'v̂op(glass) about one decade below the hi
frequency peak. This orientational peak exists above and
low the glass transition lines in the two dimensional pha
diagram of dimensionless temperatureT* and packing frac-
tion f provided that thea-peak positionva is much smaller
thanvop . On the liquid side it exists inx009 (q,v), the com-
pressibility spectrum, but not inf009 (q,v), which proves its
pure relaxational character. However, on crossing the g
transition line this peak also appears in the correlation sp
trum f009 (q,v) if T* andf become, respectively, small an
large enough. This means that the orientational peak ex
on both sides of the glass transition line and changes from
relaxational to a damped oscillational type of excitation u
der transformation of the liquid to the glass. The manner
development of the orientational peak inx009 (q,v) as a func-
tion of f ~see the double logarithmic representation in F
6! resembles at least qualitatively the behavior of the ex
peak in the susceptibility spectra for, e.g., salol and orth
erphenyl@78,20,79# at v'300 GHz under variation of the
temperature.

Since the positionvop is almost independent ofq it is
related to a localized, nonpropagating mode. In addition,
isotope effect, i.e.,vop}I 21/2, clearly proves its orientationa
origin. Since the bare frequenciesV lm(q) for l 51 scale with
I 21/2 for q50 only @cf. Eq.~42!#, the orientational peak mus
be generated by orientational modes withq'0. Why do
such long waved orientational modes play a crucial role?
answer follows from the static correlatorS11(q). In contrast
to S00(q) andS10(q) it exhibits a dominant peak with width
Dq at q50 and decays rapidly to 1 forq.Dq ~see Fig. 1!.
With decreasing temperature its peak height increases
Dq decreases. The increase ofS11(q'0) has two implica-
tions.

~i! Since the glass transition in MCT is driven by th
increase of the main peaks of the static correlators,1 it is the
increase ofS11(q'0) and the coupling of the orientationa
mode r11(qW ,t) to r00(qW ,t), the translational one, that en
hance the tendency for glass formation. This type of gl
transition mechanism was already described within
framework of MCT for crystalline systems. For orientation
glasses@84,85# and strictly periodic lattices@86,87# which
undergo a second order equilibrium phase transition the

1That the underlying mechanism leading to an ideal glass tra
tion can be much more sophisticated, i.e., not only related to
increase of, e.g., one peak inS00(q), has been recently demon
strated for a system of hard spheres with attractive interactions@80–
83#.
5-13
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crease of the critical fluctuations already led to an ideal g
transition above the equilibrium transition temperature. T
increase of the critical fluctuations is accompanied by s
ening of the critical mode.

~ii ! SinceV11(q)}1/AS11(q) @cf. Eq.~42!# the increase of
S11(q'0) implies a softening of the orientational mode f
q'0 ~see also Fig. 3!. It is this softening of the orientationa
mode withq'0 andl 51, m51 that results in a frequenc
scale separation between this orientational mode and
translational one (l 50, m50) with q'qmax. Therefore
two peaks, the orientational and the hf peaks, become
ible. The connection ofv̂op(q) with the (1,1) mode is also
supported by the fact thatv̂op(q)'V̂11

6 (q) ~see Fig. 4!.
The narrowing of the peak inS11(q) at q50 also has an

interesting implication. Since 1/Dq is a measure of a corre
lation length, the narrowing implies growth of orientation
order. Although 1/Dq does not diverge, it may be signifi
cantly larger than a few angstroms, i.e., there may exis
medium range orientational order. For instance, forf
50.381 andT* 50.04 the correlation length is about six d
ameters~cf. Fig. 1!. The fact that the increase ofS11(q'0)
is accompanied by narrowing of the peak inS11(q) at q50
proves the existence of a correlation between the occurre
of the orientational peak and medium range orientational
der. This is an interesting observation insofar as such a
relation has already been predicted@88–90,39,91#, although
this does not seem to be a universal feature@92#. We empha-
size that we do not consider this type of behavior as
exceptional case which exists for dipolar hard spheres o
For example for a system of hard ellipsoids which may
hibit medium ranged nematic order~see Ref.@93#! similar
results are expected.

That a soft mode will lead to an additional microscop
peak in the spectra has already been shown@94# for a so-
called schematic model@1#. Qualitative features of the stati
and dynamical behavior of dipolar hard spheres can also
described by a schematic model. Details will be given el
where. The couplings shown in Eqs.~38! and ~39! suggest
the use of two correlatorsf0(t) andf1(t), only. f0(t) and
f1(t) corresponds to the center of mass and the dipolar
relators, respectively, and their dynamics is described by
Bosse-Krieger model@95#:

f̈a~ t !1Va
2fa~ t !1naḟa~ t !1Va

2E
0

t

dt8ma~ t2t8!ḟa~ t8!50,

~47!

a50,1, with the memory kernels

m0~ t ![F0~f0~ t !,f1~ t !!5j1f0
2~ t !1j2f1

2~ t !, ~48a!

m1~ t ![F1~f0~ t !,f1~ t !!5j3f0~ t !f1~ t !, ~48b!

and initial conditionsfa(0)51, ḟa(t)50. To mimic the
f andT dependence of the dipolar hard spheres we cho

j1[f, j2[x/T, j3[1/T. ~49!

In Fig. 18 we presentf0(t) for fixed frequencyV051
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and different values ofV1. For V15V0 we find the typical
two step relaxation process fromf0(0)51 to a plateau at
f c[ f c

F2 and a final decay to zero. With decreasingV1 we
observe that a shoulder occurs which finally develops int
second plateau abovef c

F2 . This can easily be understood. I
case thatV1 becomes more and more soft with respect
V0, the second term inm0(t) @cf. Eq. ~48a!# already varies
more and more slowly on the microscopic time scalet0

5V0
21. Therefore the relaxation kernelm0(t) has a rather

slowly varying part. It is this part that generates the seco
plateau. Since the decay from a pronounced plateau prod
a relaxation peak in the corresponding susceptibility sp
trum we expect, besides the high frequency peak relate
V0 and thea peak, one more peak. This peak stems from
decay from the upper plateau to that atf c

F2 .
Figure 19, which showsxa9(v) at rather ‘‘low’’ tempera-

FIG. 18. f0(t) for the Bosse-Krieger model forT50.7, f
53.9995, x50.15, V051, n0510, n151, and different
V15102n/2, n50,1,2,3,4 from left to right.f c

F2 denotes the criti-
cal nonergodicity parameter of theF2 model.

FIG. 19. xa9(v) for V051, V151/10, n05n150, x50.15, and
T50.2 along path A in Fig. 2 for f5(11«)fc , fc

.2.893 131 8, «56e2n, n51,2,3 ~solid lines!, and f5fc

~dashed line!. Becausex19(v) does not vary much withf we have
not labeled the various curves withn.
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tures, confirms this observation. There is an additional
croscopic peak atv'V1, i.e., at about the frequency of th
‘‘soft mode.’’ Investigatingfa9(v), we have found that this
additional peak does not occur in the liquid phase but dee
in the glass. Therefore, the nature of that peak changes
relaxational in the ergodic phase to underdamped osc
tional in the nonergodic phase, quite like the orientatio
peak for dipolar hard spheres.

Besides the orientational peak, we have found
x009 (q,v) andf009 (q,v) above and below the glass transitio
a high frequency peak atvh f(q). It exists in the investigated
range 0.51,q,40 except in an interval centered arou
qmax, the position of the main peak inS00(q). vh f(q) is
shown in Fig. 4 forq<2. Despite an inaccuracy of about 1
~due to theq discretization! its q dependence is in phase wit
theq variation of the renormalized frequencyV̂00(q). These
qualitative features are similar to those of the type of h
frequency peak found for a system of hard spheres@57#.
Since the accuracy ofvh f(q) becomes even worse forq
→0 it is not possible to detect the expected linearq depen-
dence forq→0. Accordingly, we cannot yet prove that th
hf peak for dipolar hard spheres corresponds to high
quency sound, as found for the system of hard spheres@57#.
In @57# it was also shown that an additional peak, which w
called the anomalous oscillation peak, appears deep in
glass phase. Its origin lies in the harmonic motion of t
particles in their cages@57#. Whether or not the hump be
tween the orientational peak and the hf peaks that we
served inf009 (q,v) deep in the glass~see Figs. 10 and 15!
corresponds to the AOP is not clear. Again, due to the
striction to 30 values forq and also a smaller number o
discrete values fort compared to Ref.@57# we cannot give
detailedquantitativeinformation on, e.g., theq dependence
of the position and width of that hump. On the other ha
the high frequency wing of the orientational peak may int
fere with the AOP, thus complicating the analysis of t
latter.

A well-pronounced two peak structure in the microsco
frequency regime can also occur forx109 (q,v) ~cf. Fig. 7!
deep in the glass, whereas this does not happen forx119 (q,v)
~cf. Fig. 7! which is directly related to the dielectric los
spectrume9(q,v).

Let us come back to the orientational peak. Figure 17~a!
shows that its intensity varies linearly with temperature
low aboutT* 50.13 and forfD50.525, i.e., forT* smaller
thanTc* (fD50.525).0.13. This fact, as well as the the lac
of sensitivity of its positionvop to q and its location abou
one decade below the high frequency peak, is reminiscen
the boson peak. Additionally, the increase ofvop with in-
creasing packing fraction is similar to the shift of the bos
peak to higher frequency on increasing the pressure@96–98#.

To conclude, we can say that we have found in the
croscopic frequency regime of the compressibility spectr
and the corresponding correlation spectrum an additional
entational low frequency peak. It originates from a localiz
and nonpropagating orientational mode coupled to longitu
nal acoustic sound waves~translational modes!. Its dynami-
cal origin changes from a pure relaxational to a damped
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cillational type when crossing the glass transition from t
liquid side. Since the orientational frequency has a gap aq
50 the orientational excitation is an optical mode. The
characteristic features coincide with several explanations
the existence of the boson peak@18,35,58,62,63#, which may
stress the role of orientational degrees of freedom. It is a
interesting that the intensity of the orientational peak in
certain temperature regime@cf. Fig. 17~a!# changes linearly
with T* , which is also true for the boson peak. In additio
we have found an interesting correlation between the or
tational peak phenomenon and a medium range orientati
order, as already suggested earlier for the boson peak@88–
90,39,91#, although it has been shown that this does not se
to hold for all glass formers@92#.

For dipolar hard spheres this order is of ferroelectric ty
and for hard ellipsoids it is related to a precursor of nema
order. For SiO2 it can occur due to strong orientational bon
interactions. As demonstrated in the present paper this
dium range orientational order may result in softening o
localized, optic orientational mode and may finally gener
an additional microscopic peak about one decade below
high frequency peak.

In general, it is not easy to separate the contribution fr
the orientational motion from experimental spectra obtain
from light or neutron scattering. But this is not true for a M
simulation. Due to the availability of all the microscopic in
formation it would be desirable to explore in more detail
MD simulations the role of the orientational degrees of fre
dom in the glass transition itself and also in the spectra in
microscopic regime, as has already been done for so
propagation in liquid water@99#.

Finally, we mention that the microscopic spectral featu
we have found for dipolar hard spheres can be qualitativ
reproduced by use of a schematic model, the Bosse-Krie
model.
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APPENDIX: THE NUMERICALLY SOLVED MCT
EQUATIONS

Using the continuity equation we get the first equation
motion for the generalized density-density correlation fun
tions ~in the q frame!:

Ṡll 8m~q,t !52 i (
a5R,T

ql
a~q!f l l 8m

j ar
~q,t ! ~A1!

with
5-15
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f l l 8m
j ar

~q,t !ª
1

N
^ j lm

a* ~q,t !r l 8m8~q,0!&dmm8 ~A2!

the density–current-density correlation function. Projecting
on the tensorial densities@6# and the longitudinal transla
tional and rotational current densities@6# in one step leads to

ḟ l l 8m
j ar

~q,t !52 i (
l 250

l co2m

ql
a~q!

kBT

I a
„S21~q!…l l 2mSl 2l 8m~q,t !

2 (
l 250

l co2m

(
a85R,T

kBT

I a
E

0

t

dt8Mll 2m
aa8 ~q,t2t8!

3f l 2l 8m
j a8r

~q,t8! ~A3!

with the cutoff valuel co for l @for dipolar hard spheres it is
l co51; cf. Eqs.~36! and~37!# and I a defined in Eq.~9!. To
make use of the established numerical method to solve s
equations@73#, it is necessary to introduce auxiliary func
tions F:

Ḟ l l 8m
j ar

~q,t !ªql
a~q!f l l 8m

j ar
~q,t !. ~A4!

As a consequence Eq.~A1! reduces to

Sll 8m~q,t !52 i (
a5R,T

F l l 8m
j ar

~q,t ! ~A5!

where F l l 8m
j ar (q,t) is determined only up to an integratio

constant which does not influence the result forSll 8m(q,t).
Making use of Eq.~A4! and taking the time derivative of Eq
~A3! leads to a set of equations of similar structure to
MCT equations for simple liquids@1,2,4,3#. The molecular
a,

-
or

s.

05150
ch

e

MCT equations do not couple only all~discretized! wave
vectors, as in simple liquids, but also the indicesa5T,R for
translation and rotation and the spherical indicesl< l co and
2 l<m< l . The functionsF are auxiliary functions becaus
their introduction is just for numerical purposes. The integ
in Eq. ~A3! transforms to

E
0

t

dt8Mll 2m
aa8 ~q,t2t8!Ḟ l 2l 8m

j a8r
~q,t8!. ~A6!

Now a time derivative is multiplied by the integration me
sure dt. As a consequence the time stepDt cancels in a
discretized form of Eq.~A6!. Using the decimation techniqu
@73# Dt becomes very large. In this case the calculation
the integrals would become unstable ifDt did not cancel.

Since the auxiliary functions occur only as time deriv
tives in the original equations the result is independent of

initial values ofF l l 8m
j ar (q,t50). When solving the molecula

MCT equations we have chosen

F0l 8m
j Tr

~q,t50!5S0l 8m~q!, ~A7a!

F0l 8m
j Rr

~q,t50!50 ~A7b!

for all l 8 and

F l l 8m
j Tr

~q,t50!5
1

2
Sll 8m~q!, ~A7c!

F l l 8m
j Rr

~q,t50!5
1

2
Sll 8m~q! ~A7d!
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